(1)设
=y
x2+3x
x2+x?4
则原方程化为
y+1 2
=1 3y
11 12
解得x1=-1,x2=-4,x3,4=
5±
89
2
(2)设1999-x=a,x-1998=b,1999-x+x-1998=1,
则原方程a3+b3=(a+b)3得ab=0,即(1999-x)(x-1998)=0
∴x1=1999,x2=1998
(3)设y=
,则xy(x+y)=42,又xy+(x+y)=13?x x+1
+13x?x2
x+1
=13
x2+13 x+1
∴xy,x+y是方程x2-13x+42=0的两个根,
解得x1=6,x2=7,即
或
x+y=7 xy=6
x+y=6 xy=7
进而可得x1=1,x2=3+