解下列方程:(1)x2+3x2x2+2x?8+x2+x?43x2+9x=1112;(2)(1999-x)3+(x-1998)3=1;(3)13x?x2x+1(

2025-05-20 22:31:15
推荐回答(1个)
回答1:


(1)设

x2+3x
x2+x?4
=y
则原方程化为
1
2
y+
1
3y
=
11
12

解得x1=-1,x2=-4,x3,4=
89
2

(2)设1999-x=a,x-1998=b,1999-x+x-1998=1,
则原方程a3+b3=(a+b)3得ab=0,即(1999-x)(x-1998)=0
∴x1=1999,x2=1998
(3)设y=
13?x
x+1
,则xy(x+y)=42,又xy+(x+y)=
13x?x2
x+1
+
x2+13
x+1
=13
∴xy,x+y是方程x2-13x+42=0的两个根,
解得x1=6,x2=7,即
x+y=7
xy=6
x+y=6
xy=7

进而可得x1=1,x2=3+