∵△ABC和△CDE都是正三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=60°,又∠ACB=∠ACE+∠BCE,∠ECD=∠BCE+∠BCD,∴∠BCD=∠ACE,△ACE≌△BCD,∴∠DBC=∠CAE,即62°-∠EBC=60°-∠BAE,即62°-(60°-∠ABE)=60°-∠BAE,∴∠ABE+∠BAE=60°+60°-62°=58°,∴∠AEB=180°-(∠ABE+∠BAE)=180°-58°=122°.故此题答案选B.