∵四边形ABCD是正方形,∴CD=AD=BC=AB=9,∠D=∠C=90°,∴CF=BC-BF=2,在Rt△ADE中,∠DAE+∠AED=90°,∵AE⊥EF于E,∴∠AED+∠FEC=90°,∴∠DAE=∠FEC,∴△ADE∽△ECF,∴ DE FC = AD EC ,设DE=x,则EC=9-x,∴ x 2 = 9 9?x ,解得x1=3,x2=6,∵DE>CE,∴DE=6.