证明:用常微分方程来证∵f'(x)=f(x),即df(x)/dx=f(x)∴df(x)/f(x)=dx∴两边积分,得:ln[f(x)]=x+C∴两边同取底数为e的自然对数,得:f(x)=e^x+C(C为任意常数)把f(0)=1代入上式,解得:C=0∴f(x)=e^x