(1)∵四边形ABCO是矩形,点B的坐标为(m,1)(m>0),
∴A(m,0),C(0,1),
∵矩形OA′B′C′由矩形OABC旋转而成,
∴A′(0,m),C′(-1,0);
(2)设过点A、A′、C′的抛物线解析式为y=ax2+bx+c,
∵A(m,0),A′(0,m),C′(-1,0),
∴
,解得
am2+bm+c=0 c=m a?b+c=0
,
a=?1 b=m?1 c=m
∴此抛物线的解析式为:y=-x2+(m-1)x+m;
(3)存在.
∵点B与点D关于原点对称,B(m,1),
∴点D的坐标为:(-m,-1),
∵抛物线的解析式为:y=-x2+(m-1)x+m;
假设点D(-m,-1)在(2)中的抛物线上,
则y=-(-m)2+(m-1)×(-m)+m=-1,即-2m2+2m+1=0,
∵△=22-4×(-2)×1=12>0,
∴此点在抛物线上,解得m=
或m=1+
3
2
(舍去).1?
3
2
故m的值为
1+
3
2