(1)∵AD=BC,
∴∠BAC=∠ACD,
在△ADC与△CBA中,
∠ADC=∠ABC,AD=BC,∠BAC=∠ACD,
∴△ADC≌△CBA,
∴AB=CD,
在△ADM与△CBM中,
∠DAM=∠BCM,AD=BC,∠ADC=∠ABC,
∴△ADM≌△CBM,
∴DM=BM,
∴AM=CM,
∴△MAC是等腰三角形;
(2)连接OM,∵AC是⊙O的直径,
∴∠ABC=90°,
∵△ACM是等腰三角形,O为AC的中点,
∴OM⊥AC,即∠AOM=90°,
在△AOM与△ABC中,
∠ABC=∠AOM=90°,∠BAC=∠BAC,
∴△AOM∽△ABC,
∴
=OA AB
,即AM AC
=OA
8
5
5
,解得AC=4.
5
AC