如图,在RT三角形ABC中,角C=90度,D是AB的中点,E、F分别在AC、BC上,且DE垂直于DF

2025-05-22 21:42:25
推荐回答(2个)
回答1:

证明:延长FD到点G,使GD=DF

连接EG

则EG=DF

易证△ADG≌△BDF

∴AG=BF

可得AG‖BC(利用全等后的内错角)

∴∠GAE=90°

∴AE²+AG²=EG² 

∴AE²+BF²=EF²


有图片更好理解

回答2:

重来!

证明:延长FD到点G,使GD=DF
连接EG
则EG=DF
易证△ADG≌△BDF
∴AG=BF
可得AG‖BC(利用全等后的内错角)
∴∠GAE=90°
∴AE²+AG²=EG²
∴AE²+BF²=EF²
刚才理解错了,不好意思!