y=-x^2-2mx+1/m^2 =-(x+m)^2 + m^2 + 1/m^2所以当y取得最大值 x = -m此时最大值为f(m) = m^2 + 1/m^2 ≥ 2所以f(m)的最小值是2
二次项系数小于0 即开口向下即x= -b/2a= -m时 y最大 即f(m)=-m^2+2m^2+1/m^2+1=m^2+1/m^2+1≥(2√m^2+1/m^2)+1=2+1=3