线性代数中内积的概念

2025-05-19 04:30:30
推荐回答(4个)
回答1:

在数学中,数量积(dot product; scalar product,也称为点积)是接受在实数R上的两个向量并返回一个实数值标量的二元运算。它是欧几里得空间的标准内积。

两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为:

a·b=a1b1+a2b2+……+anbn。

使用矩阵乘法并把(纵列)向量当作n×1 矩阵,点积还可以写为:

a·b=a^T*b,这里的a^T指示矩阵a的转置。

正交变换是线性变换的一种,它从实内积空间V映射到V自身,且保证变换前后内积不变。 因为向量的模长与夹角都是用内积定义的,所以正交变换前后一对向量各自的模长和它们的夹角都不变。特别地,标准正交基经正交变换后仍为标准正交基。

扩展资料

点积的值:

u的大小、v的大小、u,v夹角的余弦。在u,v非零的前提下,点积如果为负,则u,v形成的角大于90度;如果为零,那么u,v垂直;如果为正,那么u,v形成的角为锐角。

两个单位向量的点积得到两个向量的夹角的cos值,通过它可以知道两个向量的相似性,利用点积可判断一个多边形是面向摄像机还是背向摄像机。

向量的点积与它们夹角的余弦成正比,因此在聚光灯的效果计算中,可以根据点积来得到光照效果,如果点积越大,说明夹角越小,则物体离光照的轴线越近,光照越强。

参考资料来源:百度百科-点积

回答2:

  在数学中,内积(dot product; scalar product,也称为点积)是接受在实数R上的两个向量并返回一个实数值标量的二元运算。它是欧几里得空间的标准内积。
  两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为:
  a·b=a1b1+a2b2+……+anbn。
  使用矩阵乘法并把(纵列)向量当作n×1 矩阵,点积还可以写为:
  a·b=a*b^T,这里的b^T指示矩阵b的转置。

回答3:

内积只有向量有,矩阵没有这种概念。欧几里德空间本来就是向量空间,不是矩阵空间

回答4: