(1)证明:∵CD平分△ABC的外角∠BCM,
∴∠MCD=∠DCB,
∵∠DCB=∠DAB,∠MCD=∠DBA,
∴∠DAB=∠DBA,
∴AD=BD;
(2)①证明:∵DA=DB,
∴DF垂直平分AB,
∴∠ADO=∠BDO;
②解:延长DO交AB于F,连结OA、OC交AD于P,作EH⊥AD于H,如图,
∵DA=DB,
∴DF垂直平分AB,
∴AF=
AB=3,1 2
在Rt△ADF中,
∵AD=3
,AF=3,
10
∴DF=
=
AD2?AF2
=9,
(3
)2?32
10
∵C为
的中点,AD
∴OC是线段AD的垂直平分线,
∴DP=
=AD 2
,3
10
2
∴△DOP∽△DAF,
∴
=OD AD
,即DP DF
OD 3