请阅读如下材料.如图,已知正方形ABCD的对角线ACBD于点O,E是AC上一点,AG⊥BE,垂足为G.求证:OE=OF.

2025-05-21 12:41:25
推荐回答(1个)
回答1:

证明:∵四边形ABCD是正方形.
∴∠BOE=∠AOF=90°,且OA=OB.
又∵AG⊥BE,
∴∠1+∠3=90°=∠2+∠3,
即∠1=∠2,
∴Rt△BOE≌Rt△AOF(AAS),
∴OE=OF.
(1)三角形全等,∠1=∠2

(2)∵四边形ABCD是正方形,
∴∠AOF=∠BOE=90°,且OA=OB,
又∵∠F+∠FAO=90°,∠E+∠FAO=90°,
即∠E=∠F
∴Rt△AOF≌Rt△BOE,
∴OE=OF.