求函数f(x,y)=4(x-y)-x²-y²的极值
解:令∂f/∂x=4-2x=0,得x=2;
再令∂f/∂y=-4-2y=0,得y=-2;
故有唯一驻点M(2,-2);下面求驻点M的二阶导数:
A=∂²f/∂x²=-2<0;B=∂²f/∂x∂y=0;C=∂²f/∂y²=-2;
故B²-AC=0-4=-4<0;故M(2,-2)是极大点,极大值f(x,y)=f(2,-2)=16-4-4=8;
对x求偏导得:4-2x对y求偏导得:-4-2y
令上面两式等于零,解得 x=2 , y=-2对x求=阶导记为A,得: 4=-2<0对( 4-2x )求y导记为B,得: B=0
对y求= -阶导,记为Jj得jC=-2衢
: B2- AC<0
: .在(2 , 2)取得极大值得: f(x,y)=f(2,-2)=8