若抛物线C:y2=2px(p>0)的焦点为F,过F且垂直于x轴的直线与抛物线交于两点P1,P2,已知|P1P2|=8.(1

2025-06-20 14:15:36
推荐回答(1个)
回答1:

(1)由条件得2p=8,∴抛物线C的方程为y2=8x,
设过M所作直线方程为y=a(x-3)代入y2=8x得ay2-8y-24a=0
设A(x1,y1),B(x2,y2),则y1+y2=

8
a
,y1y2=-24,
∴S(a)=
1
2
|MF||y1-y2|=2
6+
4
a2
>2
6

∴值域为(2
6
,+∞);
(2)设直线方程为ty=x-m,代入y2=8x得y2-8ty-8m=0,
设A(x1,y1),B(x2,y2),则y1+y2=8t,y1y2=-8m
∵F(2,0),∴
FA
=(x1-2,y1),
FB
=(x2-2,y2),
∵∠AFB为钝角,∴
FA
?
FB
<0,∴(x1-2)(x2-2)+y1y2<0,
即x1x2-2(x1+x2)+4-8m<0,