解答:
解:(1)①过E作EH⊥AB于点H,则EF=AD=3,AF=DE=AB=,
故tan∠EAB===;
②法一:在矩形ABCD中,AD=BC,∠ADE=∠BCE,
又CE=DE,
∴△ADE≌△BCE,
得AE=BE,∠EAB=∠EBA.
连接OF,则OF=OA,
∴∠OAF=∠OFA,∠OFA=∠EBA.
∴OF∥EB.
∵FG⊥BE,
∴FG⊥OF,
∴FG是⊙O的切线.
(法二:提示:连EF,DF,证四边形DFBE是平行四边形.)
(2)法一:假设BE能与⊙O相切.
∵AE是⊙O的直径,
∴AE⊥BE,则∠DEA+∠BEC=90°.
又∠EBC+∠BEC=90°,
∴∠DEA=∠EBC,
∴Rt△ADE∽Rt△CEB,
∴=.
设DE=x,则EC=5-x,AD=BC=3,
得=,
整理得x2-5x+9=0.
∵b2-4ac=25-36=-11<0,
∴该方程无实数根,
∴点E不存在,BE不能与⊙O相切.
法二:若BE能与⊙O相切,因AE是⊙O的直径,则AE⊥BE,∠AEB=90°.
设DE=x,则EC=5-x.
由勾股定理得:AE2+EB2=AB2,
即(9+x2)+[(5-x)2+9]=25,
整理得x2-5x+9=0,
∵b2-4ac=25-36=-11<0,
∴该方程无实数根,
∴点E不存在,BE不能与⊙O相切.
(法三:本题可以通过判断以AB为直径的圆与DC是否有交点来求解)