设f(x)=g(x)?e?xxx≠00x=0,其中g(x)有二阶连续导数,且g(0)=g′(0)=-1.(1)求f′(x);(2

2025-05-21 03:10:54
推荐回答(1个)
回答1:

(1)当x≠0时,由f(x)=

g(x)?e?x
x
x≠0
0 x=0
,得:
f′(x)=
x[g′(x)+e?x]?g(x)+e?x
x2
=
xg′(x)?g(x)+(x+1)e?x
x2

当x=0时,f′(0)=
lim
x→0
f(x)?f(0)
x

=
lim
x→0
g(x)?e?x
x2
(洛必达法则)
=
lim
x→0
g′(x)+e?x
2x
(洛必达法则)
=
lim
x→0
g″(x)?e?x
2
=
g″(0)?1
2

f′(x)=
xg′(x)?g(x)+(x+1)e?x
x2
,x≠0
g″(0)?1
2
,x=0

(2)由于g(x)具有二阶连续导数,
∴当x≠0时,f'(x)连续
又当x=0时,
lim
x→0
f′(x)=
lim
x→0
xg′(x)?g(x)+(x+1)e?x
x2
=
lim
x→0
g′(x)+xg″(x)?g′(x)+e?x?(x+1)e?x
2x

=
lim
x→0
xg″(x)?xe?x
2x
lim
x→0
g″(x)?e?x
2
=
g″(0)?1
2
=f′(0)

∴f(x)在x=0处连续
∴f(x)在(-∞,+∞)连续