解:(1)∵∠ABC和∠ACB的平分线交于点O,
∠ABC=50°,∠ACB=60°,
∴∠OBC+∠OCB=1/2(∠ABC+∠ACB)
=1/2×(50°+60°)=55°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-55°=125°;
(2)∵∠ABC和∠ACB的平分线交于点O,
∠ABC=α,∠ACB=β,
∴∠OBC+∠OCB=1/2(∠ABC+∠ACB)=1/2(α+β),
∴∠BOC=180°-(∠OBC+∠OCB)=180°-1/2(α+β);
(3)如图所示:
∵∠ABC和∠ACB邻补角的平分线交于点O,
∴∠CBO+∠BCO=(180°−α)/2 +(180°−β)/2
=180°-1/2(α+β),
∴∠BOC=180°-(180°- (α+β)/2)=1/2α+1/2β.
先采纳我的,我给你发照片过去!