令y'=p,则p'+p^2=1dp/dx=1-p^2dp/(1-p^2)=dx∫[1/(1-p)+1/(1+p)]dp=2∫dxln|(1+p)/(1-p)|=2x+C(1+p)/(1-p)=Ce^(2x),其中C是任意常数因为p(0)=y'(0)=-1,所以(1-1)/(1+1)=Ce^0,C=0即(1+p)/(1-p)=0p=-1y'=-1y=-x+B,其中B是任意常数因为y(0)=0,所以B=0所求的特解为y=-x