给出下列命题:①存在实数α,使sinα?cosα=1②存在实数α,使sinα+cosα=32③函数y=sin(32π+x)是偶

2025-06-21 15:57:12
推荐回答(1个)
回答1:

∵sinαcosα=

1
2
sin2α=1∴sin2α=2,与正弦函数的值域矛盾,故①不对;
∵sinα+cosα=
2
sin(α+
π
4
)≤
2
3
2
,从而可判断②不对;
∵y=sin(
3
2
π+x)=-cosx,为偶函数,故③正确;
将x=
π
8
代入到y=sin(2x+
5
4
π)得到sin(2×
π
8
+
5
4
π)=sin
2
=-1,
故x=
π
8
是函数y=sin(2x+
5
4
π)的一条对称轴方程,故④正确.
⑤取α=
13π
6
,β
=,α、β是第一象限的角,且α>β,但sinα<sinβ,∴命题⑤错误.
⑥:∵α、β∈(
π
2
,π),∴-π<-β<-
π
2
π
2
2
-β<π,
又cotβ=tan(
π
2
-β)=tan(
2
-β),tanα<cotβ,
∴tanα<tan(
2
-β),α、
2
-β∈(
π
2
,π),又y=tanx在(