已知抛物线y^2=-8x的一条弦被点a(-1,1)平分,求弦所在的直线方程,并求弦长

只帮忙求弦长是多少就可以了
2025-06-20 15:26:41
推荐回答(1个)
回答1:

AB:y-1=k*(x+1)
xA
x=(y-1-k)/k
y^2=-8*(y-1-k)/k
ky^2+8y-8-8k=0
yA+yB=2*1=2
-8/k=2
k=-4
yA*yB=(-8-8k)/k=[-8-8*(-4)]/(-4)=-6
(yA-yB)^2=(yA+yB)^2-4yA*yB=2^2-4*(-6)=28
AB^2=(xA-xB)^2+(yA-yB)^2=(1+1/4)*28=35
AB=√35
AB:4x+y-3=0