解:(1)抛物线y=x2-4x+3中,a=1、b=-4、c=3;
∴-
=-b 2a
=2,?4 2
=4ac?b2
4a
=-1;4×3?16 4
∴二次函数L1的开口向上,对称轴是直线x=2,顶点坐标(2,-1).
(2)①二次函数L2与L1有关图象的两条相同的性质:
对称轴为直线x=2,或顶点的横坐标为2,
都经过A(1,0),B(3,0)两点;
②线段EF的长度不会发生变化.
∵直线y=8k与抛物线L2交于E、F两点,
∴kx2-4kx+3k=8k,
∵k≠0,∴x2-4x+3=8,
解得:x1=-1,x2=5,∴EF=x2-x1=6,
∴线段EF的长度不会发生变化.