(2012?南昌)如图,已知二次函数L1:y=x2-4x+3与x轴交于A、B两点(点A在点B左边),与y轴交于点C.(1)

2025-06-21 08:28:01
推荐回答(1个)
回答1:

解:(1)抛物线y=x2-4x+3中,a=1、b=-4、c=3;
∴-

b
2a
=-
?4
2
=2,
4ac?b2
4a
=
4×3?16
4
=-1;
∴二次函数L1的开口向上,对称轴是直线x=2,顶点坐标(2,-1).

(2)①二次函数L2与L1有关图象的两条相同的性质:
对称轴为直线x=2,或顶点的横坐标为2,
都经过A(1,0),B(3,0)两点;
②线段EF的长度不会发生变化.
∵直线y=8k与抛物线L2交于E、F两点,
∴kx2-4kx+3k=8k,
∵k≠0,∴x2-4x+3=8,
解得:x1=-1,x2=5,∴EF=x2-x1=6,
∴线段EF的长度不会发生变化.