帮忙解一道初二数学题,谢谢各位啦!!

1/(x-1)+1/(x-1)(x-2)+...+1/(x-2010)(x-2011)谢谢各位啦!!
2025-05-20 01:30:44
推荐回答(3个)
回答1:

原题变形为:1/(x-1)+1/(x-2)-1/(x+1)+...+1/(x-2011)-1/(x-2010)=1/(x-2011)

回答2:

1/(x-2011)

回答3:

利用:1/(x-(n+1))- 1/(x-n)=1/(x-n)(x-(n+1)) 来解

如:1/(x-2)- 1/(x-1)=1/(x-1)(x-2)

所以:1/(x-1)+1/(x-1)(x-2)+...+1/(x-2010)(x-2011)
=1/(x-1)+ 1/(x-2)- 1/(x-1)+……+1/(x-2011)- 1/(x-2010)
=1/(x-2011)