套的这个公式
[(w+1)/(w-1)]:[(1+i)/(1-i)]=[(z-2)/(z-i)]:[(-2-2i)/(-2-i)] →→→→ [(w+1)/(w-1)]*[(-2-2i)/(-2-i)]=[(1+i)/(1-i)]*[(z-2)/(z-i)] →→→→ (w+1)/(w-1) =[(-2-i)/(-2-2i)]*[(1+i)/(1-i)]*[(z-2)/(z-i)] =[ (-2-i)/[(-2)*(1-i)] ]*[(z-2)/(z-i)] =[ (-2-i)*(1+i)/[(-2)*(1-i)*(1+i)] ]*[(z-2)/(z-i)] =[ (2+i)*(1+i)/[2*(1-i)*(1+i)] ]*[(z-2)/(z-i)] =[ (1+3i)*(1+i)/4]*[(z-2)/(z-i)]