(1)方程x2-(m-1)x-m=0中,
△=(m-1)2+4m=m2+2m+1=(m+1)2,
由m>0知必有m+1>0,故△>0.∴方程①总有两个不相等的实数根;
(2)令y1=0,依题意可解得A(-1,0),B(m,0).
∵平移后,点A落在点A'(1,3)处,
∴平移方式是将点A向右平移2个单位,再向上平移3个单位得到.
∴点B(m,0)按相同的方式平移后,点B'为(m+2,3).
则依题意有(m+2)2-(9-m)(m+2)+2(m+1)=3.
解得m1=3,m2=?
(负数舍去).5 2
∴m的值为3.
(3)∵m=3,
∴y1=x2-2x-3,y2=x2-6x+8,
∴y1与y=kx的交点坐标为:
,y2与y=kx的交点坐标为
y=kx y=x2?2x?3
,
y=kx y=x2?6x+8
又∵向上平移直线y=kx时,交点位置随之变化,若交点间的距离始终不变,
∴k=
.3 2
故答案为:
.3 2