(x 1)^2⼀(x^2 l)^2的不定积分有理式

(x 1)^2/(x^2 l)^2的不定积分有理式
2025-05-23 15:08:04
推荐回答(1个)
回答1:

令x=tant,则dx=sec²tdt∫dx/[x√(1+x²)] =∫sec²t/(tantsect) dt=∫sect/tant dt=∫1/sint dt=∫csct dx=∫csct(csct-cott)/(csct-cott)dt=∫(csc²t-csctcott)/(csct-cott)dx=∫d(csct-cott)/(csct-cott)=ln|csct-cott|+C=ln|[√(1+x²)-1]/x|+C=ln[√(1+x²)-1]-ln|x|+CC为任意常数