解答:证明:连结AD,∵AB=AC,D是BC的中点,∴AD⊥BC,∠ADB=∠ADC=90°在Rt△AED与Rt△AFD中, AE=AF AD=AD ,∴Rt△AED≌Rt△AFD.(HL)∴∠ADE=∠ADF,∵∠ADB+∠ADC=90°,∴∠EDB=∠FDC.