如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从

2025-05-21 11:01:09
推荐回答(4个)
回答1:

解:(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB= AB2-OA2=4.
∴A(3,0),B(0,4).
设直线AB的解析式为y=kx+b.
∴ {3k+b=0b=4.解得 {k=-43b=4.
∴直线AB的解析式为 y=-43x+4;
(2)如图1,过点Q作QF⊥AO于点F.
∵AQ=OP=t,∴AP=3-t.
由△AQF∽△ABO,得 QF/BO=AQ/AB.
∴ QF/4= t/5.
∴QF= 4/5t,
∴S= 1/2(3-t)• 4/5t,
∴S=- 2/5t2+ 6/5t;

(3)四边形QBED能成为直角梯形.
①如图2,当DE∥QB时,
∵DE⊥PQ,
∴PQ⊥QB,四边形QBED是直角梯形.
此时∠AQP=90°.
由△APQ∽△ABO,得 AQ/AO=AP/AB.
∴ t/3= 3-t/5.
解得t= 9/8;
②如图3,当PQ∥BO时,
∵DE⊥PQ,
∴DE⊥BO,四边形QBED是直角梯形.
此时∠APQ=90°.
由△AQP∽△ABO,得 AQ/AB=AP/AO.
即 t/5= 3-t/3.
3t=5(3-t),
3t=15-5t,
8t=15,
解得t= 15/8;

(4)t= 5/2或t= 45/14.

回答2:

(1)首先由在Rt△AOB中,OA=3,AB=5,,求得OB的值,然后利用待定系数法即可求得二次函数的解析式;
(2)过点Q作QF⊥AO于点F,由△AQF∽△ABO,根据相似三角形的对应边成比例,借助于方程即可求得QF的长,然后即可求得△APQ的面积S与t之间的函数关系式;
(3)①分别从DE∥QB与PQ∥BO去分析,借助于相似三角形的性质,即可求得t的值;
②根据题意可知即OP=OD时,则列方程即可求得t的值.解答:解:(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB= =4.
∴A(3,0),B(0,4).
设直线AB的解析式为y=kx+b.
∴ 解得
∴直线AB的解析式为 ;

(2)如图1,过点Q作QF⊥AO于点F.
∵AQ=OP=t,∴AP=3-t.
由△AQF∽△ABO,得 .
∴ = .
∴QF= t,
∴S= (3-t)• t,
∴S=- t2+ t;

(3)四边形QBED能成为直角梯形.
①如图2,当DE∥QB时,
∵DE⊥PQ,
∴PQ⊥QB,四边形QBED是直角梯形.
此时∠AQP=90°.
由△APQ∽△ABO,得 .
∴ = .
解得t= ;
②如图3,当PQ∥BO时,
∵DE⊥PQ,
∴DE⊥BO,四边形QBED是直角梯形.
此时∠APQ=90°.
由△AQP∽△ABO,得 .
即 = .
3t=5(3-t),
3t=15-5t,
8t=15,
解得t= ;

(4)t= 或t= .

回答3:

解:(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB= AB2-OA2=4.
∴A(3,0),B(0,4).
设直线AB的解析式为y=kx+b.
∴ {3k+b=0b=4.解得 {k=-43b=4.
∴直线AB的解析式为 y=-43x+4;
(2)如图1,过点Q作QF⊥AO于点F.
∵AQ=OP=t,∴AP=3-t.
由△AQF∽△ABO,得 QF/BO=AQ/AB.
∴ QF/4= t/5.
∴QF= 4/5t,
∴S= 1/2(3-t)• 4/5t,
∴S=- 2/5t2+ 6/5t;

(3)四边形QBED能成为直角梯形.
①如图2,当DE∥QB时,
∵DE⊥PQ,
∴PQ⊥QB,四边形QBED是直角梯形.
此时∠AQP=90°.
由△APQ∽△ABO,得 AQ/AO=AP/AB.
∴ t/3= 3-t/5.
解得t= 9/8;
②如图3,当PQ∥BO时,
∵DE⊥PQ,
∴DE⊥BO,四边形QBED是直角梯形.
此时∠APQ=90°.
由△AQP∽△ABO,得 AQ/AB=AP/AO.
即 t/5= 3-t/3.
3t=5(3-t),
3t=15-5t,
8t=15,
解得t= 15/8;

(4)t= 5/2或t= 45/14.

回答4:

解:(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB= =4.
∴A(3,0),B(0,4).
设直线AB的解析式为y=kx+b.
∴ 解得∴直线AB的解析式为 ;

(2)如图1,过点Q作QF⊥AO于点F.
∵AQ=OP=t,∴AP=3-t.
由△AQF∽△ABO,得 .
∴ = .
∴QF= t,
∴S= (3-t)• t,
∴S=- t2+ t;

(3)四边形QBED能成为直角梯形.
①如图2,当DE∥QB时,
∵DE⊥PQ,
∴PQ⊥QB,四边形QBED是直角梯形.
此时∠AQP=90°.
由△APQ∽△ABO,得 .
∴ = .
解得t= ;
②如图3,当PQ∥BO时,
∵DE⊥PQ,
∴DE⊥BO,四边形QBED是直角梯形.
此时∠APQ=90°.
由△AQP∽△ABO,得 .
即 = .
3t=5(3-t),
3t=15-5t,
8t=15,
解得t= ;

(4)t= 或t= .