已知向量a=(cosA,sinA),向量b=(√3,-1),则|2a-b|的最大值、最小值分别是?答案详解

2025-06-21 03:21:40
推荐回答(2个)
回答1:

a = (cosa,sina),b = (√3, -1)
那么2a-b = (2cosa-√3, 2sina+1)
|2a-b| = √ ((2cosa-√3)^2 + (2sina+1)^2)
= √ (4cos^2 - 4√3cos + 3 + 4sin^2 + 4sin + 1)
= √(4sina - 4√3cosa + 8)
= 2√2(1/2 sina - √3/2 cosa + 1)
= 2√2(sin(a-π/6) +1)
因为sin(a-π/6)取值范围为[ -1, 1]
所以sin(a-π/6) + 1 取值范围为[0, 2]
所以最大值为2√2*2 = 4
最小值= 2√2*0 = 0
请采纳。

回答2:

a = (cosa,sina),b = (√3, -1)
那么2a-b = (2cosa-√3, 2sina+1)
|2a-b| = √ ((2cosa-√3)^2 + (2sina+1)^2)
= √ (4cos^2 - 4√3cos + 3 + 4sin^2 + 4sin + 1)
= √(4sina - 4√3cosa + 8)
= 2√2(1/2 sina - √3/2 cosa + 1)
= 2√2(sin(a-π/6) +1)
因为sin(a-π/6)取值范围为[ -1, 1]
所以sin(a-π/6) + 1 取值范围为[0, 2]
所以最大值为2√2*2 = 4
最小值= 2√2*0 = 0