如图,P为矩形ABCD内一点,已知PA=4,PB=1,PC=5,求PD的长

2025-05-23 14:01:43
推荐回答(4个)
回答1:

就是这样啦。

回答2:

PA^2+PC^2=PB^2+PD^2

上式的证明可用勾股定理:PA^2=X^2+Y^2
PC^2=(AB-X)^2+(BC-Y)^2
PB^2=Y^2+(BC-Y)^2
PD^2=X^2+(AB-X)^2

故PD=2√10

回答3:

过P分别作AB,BC,CD,DA的垂线,则PE=BF,PF=BE,PG=CF,DF=AE
勾股定理得
AP^2=AE^2+BF^2.....①
BP^2=BE^2+BF^2.....②
CP^2=BE^2+CF^2.....③
①-②+③
AP^2-BP^2+CP^2=AE^2+BF^2-(BE^2+BF^2)+BE^2+CF^2
=AE^2+CF^2=DP^2
算得DP=2√10

回答4:

过P做两边的垂线,交AB、BC、CD、DA于EFGH
ABCD是矩形,所以PE=BF,PF=BE,PG=CF,DF=AE
AP^2=AE^2+BF^2.....①
BP^2=BE^2+BF^2.....②
CP^2=BE^2+CF^2.....③
DP^2=AE^2+CF^2.....④
①-②+③
AP^2-BP^2+CP^2=AE^2+BF^2-(BE^2+BF^2)+BE^2+CF^2
=AE^2+CF^2=DP^2
所以DP^2=AP^2-BP^2+CP^2=16-1+25=40
DP=2√10