解:∵x²+xy+y²=4 ==>2x+y+xy'+2yy'=0 (对x求导数) ==>y'=-(2x+y)/(x+2y) ∴在点(2,-2)处的斜率k=-(2*2-2)/(2-2*2)=-1 ∵切线过点(2,-2) ∴切线方程是y=-(x-2)-2,即y=-x。
都对x求导得:2x+y+xy‘+2yy'=0 把(2,-2)这一点代进去:得y'=1 则切线方程是:y=x-4