(1)证明:∵AD平分∠BAC,∴∠BAD= 1 2 ∠BAC,又∵AE平分∠BAF,∴∠BAE= 1 2 ∠BAF,∵∠BAC+∠BAF=180°,∴∠BAD+∠BAE= 1 2 (∠BAC+∠BAF)=90°,即∠DAE=90°,故DA⊥AE;(2)∵AB=AC,AD平分∠BAC,∴AD⊥BC,故∠ADB=90°∵BE⊥AE,∴∠AEB=90°,∠DAE=90°,故四边形AEBD是矩形.∴AB=DE,∴AC=DE.