设BF交AE于H则:
∠BHA=180-∠ABF-∠BAD-∠DAE
∠ABF=1/2∠B
∠BAD=∠90-∠ABC=∠C
∠DAE=1/2(90-∠C)=1/2∠B
所以∠BHA=180-∠ABF-∠BAD-∠DAE=180-1/2∠B-∠C-1/2∠B=180-∠B-∠C=∠A=90°
所以BF⊥AE
2
∠BAE=2∠C=∠BAD+∠DAE=90-∠B+1/2(90-∠C)=∠C+45-1/2∠C=1/2∠C+45
即2∠C=1/2∠C+45即∠C=30°
则∠ABC=90-∠C=60°