(1)∵f(x)=2x3-3(a+1)x2+6ax+8,∴f′(x)=6x2-6(a+1)x+6a,又∵f(x)在x=3处取得极值,∴f′(3)=6×9-6(a+1)×3+6a=0,解得a=3.∴f(x)=2x3-12x2+18x+8;(2)A(1,16)在f(x)上,由(1)可知f′(x)=6x2-24x+18,f′(1)=6-24+18=0,∴切线方程为y=16.