解答:(本小题满分10分)
(1)证明:连接AC,BD交于点O,以OA为x轴正方向,以OB为y轴正方向,
OP为z轴建立空间直角坐标系.
∵PA=AB=
,则A(1,0,0),B(0,1,0),
2
D(0,-1,0),P(0,0,1).
=BN
1 3
,得N(0,BD
,0),1 3
由
=PM
1 3
,得M(PA
,0,1 3
),2 3
=(-MN
,1 3
,-1 3
),2 3
=(-1,-1,0),AD
∵
?MN
=0,∴MN⊥AD.AD
(2)∵M在PA上,设
=λPM
,得M(λ,0,1-λ),PA
∴
=(λ,-1,1-λ),BM
=(0,-2,0),BD
设平面MBD的法向量
=(x,y,z),n
由
,得
?n
=0BD
?n
=0BM
,
-2y=0 λx-y+(1-λ)z=0
取z=λ,得
=(λ-1,0,λ),n
∵平面ABD的法向量为
=(0,0,1),二面角M-BD-A的大小为OP
,π 4
∴cos
=|π 4
?n
OP |
||n