(1)∵对于任意的n∈N*,总有an,Sn,an2成等差数列.
∴2Sn=an+
,
a
令n=1,得2a1=2S1=a1+
,解得a1=1.
a
(2)当n≥2时,由2Sn=an+
,2Sn?1=an?1+
a
,
a
得2an=an+
?an?1?
a
,
a
∴(an+an-1)(an-an-1-1)=0,
∵?n∈N*,an>0,∴an-an-1=1,
∴数列{an}是公差为1的等差数列,
∴an=1+(n-1)×1=n.
(3)由(2)可得bn=
.1 n2
当n≥2时,bn<
=1 n(n?1)
?1 n?1
,1 n
∴Tn<1+(1?
)+(1 2
?1 2
)+…+(1 3
?1 n?1
)=2-1 n
<2.1 n
当n=1时,T1=bn=1<2.
∴对任意正整n,总有Tn<2.