xe^x - ye^y = ze^z
两边对 x 求偏导,(1+x)e^x = (1+z)e^z∂z/∂x, ∂z/∂x = (1+x)e^x/[(1+z)e^z]
两边对 y 求偏导,-(1+y)e^y = (1+z)e^z∂z/∂y, ∂z/∂y = -(1+y)e^y/[(1+z)e^z]
u = f(x, y, z),
∂u/∂x = ∂f/∂x+ (∂f/∂z)(∂z/∂x) = ∂f/∂x + (∂f/∂z)(1+x)e^x/[(1+z)e^z],
∂u/∂y = ∂f/∂y+ (∂f/∂z)(∂z/∂y) = ∂f/∂y - (∂f/∂z)(1+y)e^y/[(1+z)e^z],
∂u/∂z = ∂f/∂z
du = (∂u/∂x)dx+ (∂u/∂y)dy + (∂u/∂z)dz
= {∂f/∂x+(∂f/∂z)(1+x)e^x/[(1+z)e^z]}dx + {∂f/∂y-(∂f/∂z)(1+y)e^y/[(1+z)e^z]}dy + (∂f/∂z)dz
函数可导一定连续,连续不一定可导。
二阶函数可导一定可以得出一阶导数连续且可导。