已知奇函数f(x)的定义域为【-2,2】,且在区间【0,2】上单调递减,若f(1-m)+f(1-m^2)<0的实数m的取值范围

2025-06-22 06:44:25
推荐回答(2个)
回答1:

解:
已知奇函数函数f(x)的定义域为【-2,2】,且在区间【0,2】上单调递减
所以,在〔-2,2〕上是递减的
f(m)+f(m-1)>0,
f(m)>-f(m-1)=f(1-m)
m<1-m;-2<=m<=2;-2<=1-m<=2
m<1/2;;-2<=m<=2;-1<=m<=3
交集:-1<=m<1/2
实数m的取值范
:-1<=m<1/2

回答2:

f(1-m)+f(1-m^2)<0,得f(1-m)<-f(1-m^2),即f(1-m)