证明:过点B作AC的平行线,交AD的延长线于点G则∠G=∠DAC,∠GBD=∠C∵BD=CD∴△ADC≌△GDB∴AC=BG∵AC=BE∴BG=BE∴∠BEG=∠G∵∠BEG=∠AEF,∠G=∠EAF∴∠EAF=∠AEF∴FA=FE∴△AEF是等腰三角形
过A作AG平行BC,交BF延长线于G,则AF/FC=AG/BCAE/ED=AG/BD因为D为BC中点所以BC=2BD所以AE/ED=2AF/FC