设1\(x^4+1)=(ax+b)\[x^2+2^(1\2)x+1]+(cx+d)\[x^2-2^(1\2)x+1]则a+c=0 b+d+2^(1\2)(c-a)=0a+c+2^(1\2)(d-b)=0 b+d=1
[-2*arctan(1-根号2*x) + 2*arctan(1+根号2*x)-Ln|-1+根号2*x-x^2|+Ln|1+根号2*x+x^2| ] / 4*根号2 +C