(1)设公差为d,公比为q,显然q>0
则2d+q^4=20 (1) 4d+q^2=12 (2)
(1)*2-(2) (2q^2+7)(q^2-4)=0
∵q>0
∴q=2 代入得d=2
an=1+2(n-1)=2n-1
bn=2^(n-1)
(2)
an/bn=(2n-1)/2^(n-1)=(4n-2)/(2^n)
错项相消法
Sn=a1/b1+a2/b2+a3/b3+……+an/bn ......................①
=2/2+6/2²+10/2³+……+(4n-2)/(2^n)
1/2Sn=2/2²+6/2³+……+4/(2^n)-【(4n-2)/(2^n+1)】 ......................②
①-②得:
1/2Sn=1+【4/2²+4/2³+……+4/(2^n)】-【(4n-2)/(2^n+1)】
=1+【4/2²-4/(2^n)*1/2】/(1-1/2)-【(4n-2)/(2^n+1)】
=1+【2-4/(2^n)】-【(4n-2)/(2^n+1)】
=1+2-4/(2^n)-【(2n-1)/(2^n)】
Sn=6-(4n+6)/(2^n)
易求q=2,d=2,an=2n-1,bn=2的n-1次方