1/a+1/b+1/c=1/(a+b+c)<==>1/a+1/b=1/(a+b+c)-1/c,<==>(a+b)/(ab)=-(a+b)/[c(a+b+c)],<==>a=-b,或ab+ac+bc+c^2=0,<==>a=-b,或b=-c,或c=-a.当a=-b时a^2019=(-b)^2019=-b^2019,∴1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019),同理,b=-c,或c=-a上式也成立。