这个明显证不出来...你是不是少写了关于vn的条件
由u[n+1] > 0, v[n]·u[n]/u[n+1]-v[n+1] ≥ a, 有v[n]·u[n]-v[n+1]·u[n+1] ≥ a·u[n].
于是v[1]·u[1]-v[m+1]·u[m+1] = ∑{1 ≤ n ≤ m} (v[n]·u[n]-v[n+1]·u[n+1]) ≥ ∑{1 ≤ n ≤ m} a·u[n].
又由v[m+1]·u[m+1] > 0, a > 0, 得∑{1 ≤ n ≤ m} u[n] < v[1]·u[1]/a.
正项级数∑u[n]的部分和有界, 故收敛.