∵π/4∴-π<π/4-a<0∵cos【(π/4)-a】=4/5∴sin(π/4-a)=-3/5 ∵0∴3π/4∵sin【(3π/4)+b】=5/13∴cos(3π/4+b)=-12/13 ∴cosa =cos[(π/4-(π/4-a)]=cosπ/4cos(π/4-a)+sinπ/4sin(π/4-a)=√2/2*4/5+√2/2*(-3/5)=-√2/10 cos(a+b)=sin[π/2-(a+b)=sin[(3π/4+b)-(π/4-a)]=sin(3π/4+b)cos(π/4-a)-cos(3π/4+b)sin(π/4-a)=5/13*4/5-(-12/13)*(-3/5)=-16/65