设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|数列存在唯一极限。
收敛数列与其子数列间的关系:子数列也是收敛数列且极限为a恒有|Xn|
扩展资料
数列的收敛性与前面有限项无关:即数列去掉有限项或增加有限项不影响数列的收敛性;如果数列收敛,也不影响数列的极限值。
收敛数列的有界性:如果数列{an}收敛于a,则数列{an}有界,即存在M>0,使得| an|≤M恒成立。
同时也说明:
(1)如果数列{an}收敛于a,则对任意给定的正数ε,an 最多只有有限项落在以a为中心,ε为半径的邻域U(a,ε)外。
(2) 如果数列{an}收敛a,则在此数列中一定有最大数或最小数,但不一定同时有最大数和最小数。
(3) 数列收敛一定有界,但是有界的数列不一定收敛。
参考资料来源:百度百科-收敛数列
收敛是高数中对于函数及数列极限的一个定义,也就是极限。在数列中即为随着项数n趋近于正无穷的变化过程中,an数列所对应的值无限趋向于一个界,但是不会达到。也可以说它的极限是这个数。 用数学定理解释就是 设 {An} 为实数列,a 为定数.若对任给的正数 ε,总存在正整数N,使得当 n>N 时有∣An-a∣<ε 则称数列 {An} 收敛于 a,定数 a 称为数列 {Xn} 的极限
收敛于一个数就是小于这个数、它的极限是这个数
就是有极限的数列。