用N-ε语言对于任意ε>0存在N=max(1,5/2ε)当n>N时|(3n^2+n)/(2n^2-1)-3/2|=|(6n^2+2n-6n^2+3)/[2(2n^2-1)]|=(2n+3)/[2(2n^2-1)]因为n>N>=1,所以2n+3<2n+3n=5n2n^2-1>2n^2-n^2=n^2(分子更大,分母更小的数更大)<5n/[2(n^2)]=5/2n<5/2(5/2ε)=ε由极限定义lim n->∞ (3n^2+n)/(2n^2-1)=3/2