因为x + y = 1, 所以 2根号(xy) <= x + y = 1
所以 xy <= 1/4 (当 x = y = 1/2, '=' 成立)
所以 x^2 + y^2 = 1 - 2xy >= 1/2 ----------- (1)
且有 1/(xy)^2 >= 1/(1/4)^2 = 16 ----------- (2)
原式左边=
x^2 + 2 + 1/x^2 + y^2 + 2 + 1/y^2
= x^2 + y^2 + (x^2 + y^2)/(xy)^2 + 4
根据(1),(2)可得
>= 1/2 + 16/2 + 4 = 25/2
即(x+1/x)^2 + (y+1/y)^2 >= 25/2