∵sinθ+cosθ=m,θ∈(0,π).①
∴(sinθ+cosθ)2=m2,即1+2sinθcosθ=m2,
∴2sinθcosθ=m2-1<0,
∴cosθ<0,sinθ>0,
∴sinθ-cosθ=
=
1-2sinθcosθ
,②
2-m2
由①、②,得:sinθ=
,cosθ=m+
2-m2
2
,m-
2-m2
2
∴tanθ=
.m+
2-m2
m-
2-m2
(2)∵m=
∴tanθ=-1 5
.4 3
sin2θ-sinθcosθ+2=
sin2θ-sinθcosθ+2(sin2θ+cos2θ)
sin2θ+cos2θ
=
=3tan2θ-tanθ+2
tan2θ+1
.78 25