为什么lim(x→0)arctan(1⼀x)不存在? 是因为 lim(x→0+)arctan(1⼀

2025-05-22 15:54:11
推荐回答(1个)
回答1:

是这个原因。对于x→0时的arctan(1/x)的极限,左右极限不相等,当然就是无极限。

函数在某一点极限存在的充要条件bai是函数左极限和右极限在某点都存在且相等。

如果左右极限不相同、或者不存在。则函数在该点极限不存在。即从左趋向于所求点时的极限值和从右趋向于所求点的极限值相等。

扩展资料:

极限的求法有很多种:

1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值

2、利用恒等变形消去零因子(针对于0/0型)

3、利用无穷大与无穷小的关系求极限

4、利用无穷小的性质求极限

5、利用等价无穷小替换求极限,可以将原式化简计算

6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限

7、利用两个重要极限公式求极限

8、利用左、右极限求极限,(常是针对求在一个间断点处的极限值)

9、洛必达法则求极限