矩阵的迹 到底有什么物理意义呢?

2024-12-07 09:57:11
推荐回答(4个)
回答1:

简化计算步骤

在数值分析中,由于数值计算误差,测量误差,噪声以及病态矩阵,零奇异值通常显示为很小的数目。

将一个矩阵分解为比较简单或者性质比较熟悉的矩阵之组合,方便讨论和计算。由于矩阵的特征值和特征向量在化矩阵为对角形的问题中占有特殊位置, 因此矩阵的特征值分解。尽管矩阵的特征值具有非常好的性质,但是并不是总能正确地表示矩阵的“大小”。


扩展资料:

性质

(1)设有N阶矩阵A,那么矩阵A的迹(用


表示)就等于A的特征值的总和,也即矩阵A的主对角线元素的总和。


1、迹是所有对角元素的和

2、迹是所有特征值的和

3、某些时候也利用tr(AB)=tr(BA)来求迹

4、tr(mA+nB)=m tr(A)+n tr(B)

参考资料来源:百度百科—矩阵的迹

回答2:

方便讨论和计算。

将一个矩阵分解为比较简单或者性质比较熟悉的矩阵之组合,方便讨论和计算。由于矩阵的特征值和特征向量在化矩阵为对角形的问题中占有特殊位置, 因此矩阵的特征值分解。

扩展资料:

性质:

1、在数值分析中,由于数值计算误差,测量误差,噪声以及病态矩阵,零奇异值通常显示为很小的数目。

2、设有N阶矩阵A,那么矩阵A的迹就等于A的特征值的总和,也即矩阵A的主对角线元素的总和。

3、U和V中分别是A的奇异向量,而B是A的奇异值。AA'的特征向量组成U,特征值组成B'B,A'A的特征向量组成V,特征值(与AA'相同)组成BB'。因此,奇异值分解和特征值问题紧密联系。

回答3:

矩阵的迹作为数学概念,是由实际问题抽象得出的,要了解矩阵的迹的物理意义,还要先从它的数学意义说起。
根据线性代数的知识可知,在选定线性空间的一组基底后,每一个线性变换都对应于一个矩阵,但是为线性空间选择基底可以是很任意的,选的基底不同,一般其线性变换对应的矩阵就不同,为了研究问题,就要找到这些不同的矩阵间的共同之处,这就是矩阵的迹,也就是说,同一个线性变换,在不同基底下的矩阵虽然不同,但其这些矩阵的迹相同。
多说一点,我们生活的世界是变化的,研究问题就要抓住这些变化中的不变量进行研究,例如解析几何中对平面上的两点,选不同的坐标系会导致点的坐标不同,但这两点间的距离可以用公式求出,它是不变的,即线段长度是坐标变换下的不变量,也就是我们要重点研究的对象。
物理中经常要用到张量,2阶张量可以用矩阵来表示(1阶张量即矢量,0阶张量即标量),广义相对论中用到的里奇张量就是2阶张量(用来描述时间弯曲程度),物理中参考系不同,里奇张量的分量一般就不同,而对里奇张量进行类似于求矩阵迹的运算后(严格说法是经度规升指标后求缩并),得到标量曲率R,它是不依赖于参考系的,即任何参考系看来标量曲率R是相同的,这可以算是矩阵迹的一个物理意义。

回答4:

比如一个卡尔曼滤波问题,那个估计误差协方差矩阵,它的主对角线的和越小,说明估计月准