如图,在平行四边形ABCD中,BE⊥AC,DF⊥AC,E,F分别为垂足,试说明四边形BEDF是平行四边形

2025-06-20 13:40:32
推荐回答(1个)
回答1:

证明:∵ABCD是平行四边形,
∴AD=BC,∠DAF=∠BCE,OB=OD,OA=OC.
∵BE⊥AC,DF⊥AC,
∴∠AFD=∠CEB=90°.
∴△ADF≌△CBE(AAS).
∴AF=CE.
∴OE=OF.
∴四边形BEDF是平行四边形.(对角线互相平分的四边形是平行四边形)