(2014?宜春模拟)如图所示,作斜率为?14的直线l与抛物线D:2y2=x相交于不同的两点B、C,点A(2,1)在直

2025-06-21 04:55:46
推荐回答(1个)
回答1:

(1)证明:设BC直线为y=?

1
4
x+t,B(x1y1),C(x2y2),
y=?
1
4
x+t
2y2=x
得y2+2y-2t=0,
∴y1+y2=-2,y1y2=-2t.
KAB+KAC
y1?1
x1?2
+
y2?1
x2?2
(2y1y2+2)(y1+y2)?8t+4
(x1?2)(x2?2)
(?4t+2)(?2)?8t+4
(x1?2)(x2?2)
=0

∴∠BAC的平分线为x=2,即△ABC内心在定直线x=2上.
(2)解:∵∠BAC=90°,由(1)知直线AB:y=x-1,直线AC:y=3-x,
y=x?1
2y2=x
解得B(
1
2
,?
1
2
)

同理可得C(
9
2
,?
3
2
)∴|AB|=